Tutorial 9 The Remaining Propositional Rules of Inference: Alternative approach to Exercises 9.

You should now Launch Deriver and do the 4 exercises of Propositional Exercise 9 (Propex9).

You have choice here of how to do this. You can work on the exercise which is reproduced below. Or you can click Propositional Exercises (A click should download a zipped folder of files ('PropositionalExercises<mostRecentVersion>.zip'). Your web browser may expand this directly or double clicking will expand (unzip) it. Launch Deriver first, then open the files in Deriver.)

Exercises to accompany Tutorial 9

Exercise 1 (of 4).

Derive the following using Tactics. (Start the derivation, switch Tactics on, select the disjunt formula, and click ∨E-- this will lay out the derivation for you.) Then repeat the derivations without using Tactics.

a) F∨G,F⊃H,G⊃H∴H
b) (F∧F)∨(G∧G),F⊃H,G⊃H∴H
c) F∨G ∴G∨F
d) (F⊃G)∧(H⊃D), F∨H ∴ G∨D

Exercise 2 (of 4). (*slightly more difficult*)

Derive the following.

a) F∨(G∧∼G)∴ F
b) F∨G, G⊃H ∴ ∼F⊃H
c) ∼F∧∼G∴ ∼(F∨G)

There are a number of important theorems which can be expressed as equivalences-- here we consider slightly weakened versions of them which are conditionals.

Derive

De Morgan's Laws

d) ∴ (∼F∧∼G)⊃∼(F∨G)

Distribution

e) ∴ (F∧(G∨H))⊃((F∧G)∨(F∧H))
f) ∴ ((F∨G)∧(F∨H))⊃(F∨(G∧H))
g) ∴ (F∧(G∨H))⊃((F∧G)∨(F∧H))
h) ∴ ((F∨G)∧(F∨H))⊃(F∨(G∧H))

Implication

j) ∴ (∼F∨G)⊃(F⊃G)

Exercise 3 (of 4).

Derive the following with or without Tactics. (Start the derivation, switch Tactics on, and click ≡I --this will lay out the derivation for you.) Then do the derivations without using Tactics.

a) (F⊃G)∧(G⊃F) ∴ F≡G
b) ∴ (F∧F)≡F
c) ∴ (F∨F)≡F

Exercise 4 (of 4).

There are a number of well-known theorems which express equivalences between formulas, derive them

Association

a) ∴ F∨(G∨H)≡(F∨G)∨H
b) ∴ F∧(G∧H)≡(F∧G)∧H

Commutation

c) ∴ F∨G≡G∨F
d) ∴ F∧G≡G∧F

De Morgan's Laws

e) ∴ ∼(F∧G)≡∼F∨∼G
f) ∴ ∼(F∨G)≡∼F∧∼G

Distribution

g) ∴ F∧(G∨H)≡(F∧G)∨(F∧H)
h) ∴ F∨(G∧H)≡(F∨G)∧(F∨H)

Double Negation

i) ∴ F≡∼∼F

Equivalence

j) ∴ (F≡G)≡(F⊃G)∧(G⊃F)
k) ∴ (F≡G)≡(F∧G)∨(∼F∧∼G)

Exportation

l) ∴ (F⊃(G⊃H))≡((F∧G)⊃H)

Implication

m) ∴ F⊃G≡∼F∨G

Transposition

n) ∴ F⊃G≡∼G⊃∼F