Tutorial 10 Common inference patterns and rewrite rules: Alternative approach to Exercises 10.

8/21/06

You should now Launch Deriver and do the 1 exercise of Propositional Exercise 10 (Propex10).

Exercises to accompany Tutorial 10

Exercise 1 (of 1).

There are a number of well-known theorems which express equivalences between formulas. Experienced logicians know these off by heart. You have already derived many of them. Be sure you can derive the rest. Feel free to use rewrite rules on these.

Absorption

1) ∴ (F∨(F∧G))≡F
2) ∴ (F∧(F∨G))≡F
3) ∴ (F⊃(F⊃G))≡(F⊃G)

Association

4) ∴ F∨(G∨H)≡(F∨G)∨H
5) ∴ F∧(G∧H)≡(F∧G)∧H

Commutation

6) ∴ F∨G≡G∨F
7) ∴ F∧G≡G∧F
8) ∴ (F≡G)≡(G≡F)
9) ∴ F⊃(G⊃H)≡G⊃(F⊃H)

Contraposition

10) ∴(F⊃G)≡(∼G⊃∼F)

De Morgan's Laws
11) ∴ ∼(F∧G)≡∼F∨∼G
12) ∴ ∼(F∨G)≡∼F∧∼G

Distribution

13) ∴ F∧(G∨H)≡(F∧G)∨(F∧H)
14) ∴ F∨(G∧H)≡(F∨G)∧(F∨H)

Double Negation
15) ∴ F≡∼∼F

Equivalence
16) ∴ (F≡G)≡(F⊃G)∧(G⊃F)
17) ∴ (F≡G)≡(F∧G)∨(∼F∧∼G)


Excluded middle

18) ∴ F∨∼F

Exportation

19) ∴ (F⊃(G⊃H))≡((F∧G)⊃H)

Idempotence

20) ∴ (F∧F)≡F
21) ∴ (F∨F)≡F

Implication

22) ∴ F⊃G≡∼F∨G

Relations between connectives

23) ∴ (F⊃G)≡(∼F∨G)
24) ∴ (F⊃G)≡∼(F∧∼G)
25) ∴ (F∨G)≡(∼F⊃G)
26) ∴ (F∧G)≡∼(F⊃∼G)
27) ∴ (F≡G)≡ ((F⊃G) ∧ (G⊃F))


Transitivity of Implication

28) F⊃G,G⊃H∴F⊃H


Transposition

29) ∴ F⊃G≡∼G⊃∼F